
J
H
E
P
0
1
(
2
0
0
7
)
1
0
0

Published by Institute of Physics Publishing for SISSA

Received: October 11, 2006

Accepted: January 5, 2007

Published: January 30, 2007

Monopoles, noncommutative gauge theories in the

BPS limit and some simple gauge groups

Carmelo Pèrez Mart́ın and Carlos Tamarit
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1. Introduction

Although they have not been detected at the laboratory yet, monopoles play a key role

in the understanding of some properties of non-abelian gauge theories. In QCD, where

monopole degrees of freedom are uncovered by means of the Abelian projection, the con-

finement of colour can be explained as the effect of monopole condensation in the vac-

uum [1]. Monopoles, namely, BPS monopoles, occur as single-particle states in quan-

tum non-abelian gauge theories with extended supersymmetry (see ref. [2] and references

therein). S-duality — the generalization of the Montonen-Olive electric-magnetic duality

conjecture — seems to be realized in N = 4 super-Yang-Mills theory and some N = 2 su-

persymmetric gauge theories with vanishing β-function (for further information the reader

is referred to refs. [3, 4]).

BPS monopoles have been constructed and studied for some noncommutative U(N)

gauge theories [5 – 11]. In particular, in refs. [6] and [8], a noncommutative U(2) BPS

monopole was explicitly constructed up to second order in the noncommutative parameters

θµν by expanding the BPS equations in powers of these parameters. The monopole so
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obtained is smooth and goes to the ordinary SU(2) BPS monopole as θµν → 0. And

yet, up to the best of our knowledge, no results concerning the existence and no explicit

construction of monopoles are available so far for noncommutative gauge theories with

simple gauge groups such as SU(N) or SO(N). It is the main purpose of this paper

to look for and give explicit monopole — and some two-monopole — solutions to the

noncommutative equations of motion for noncommutative Yang-Mills-Higgs theories in the

BPS limit when the gauge groups are SU(2), SU(3) and SO(5). Let us next argue why we

have chosen SU(2), SU(3) and SO(5) as gauge groups.

It has long been known [12] that in ordinary Yang-Mills-Higgs theories with simple

gauge groups and when there is maximal symmetry breaking, all magnetically charged BPS

solutions may be regarded as multi-monopole configurations containing suitable numbers

of different types of the so-called fundamental monopoles. The fundamental monopoles of

the theory are obtained by embedding the SU(2) BPS monopole in the SU(2) subgroups

of the gauge group of the theory furnished by its simple roots. Hence it seems natural

to start out by constructing monopole solutions for noncommutative gauge theories with

gauge group SU(2). Once this is done we would like to see how things work for larger simple

gauge groups. The simplest choice seems to be SU(3). Next, when the gauge symmetry is

not broken to the maximal torus of the gauge group, but the unbroken gauge group has a

non-Abelian component, there exist degrees of freedom that show the presence of massless

monopoles [13]. These massless monopoles do not occur classically as isolated solutions

to the BPS equations and must be studied as part of multi-monopole configurations. The

simplest instance of a theory where the existence of these massless monopoles can be

analysed was furnished in ref. [13]: it is a theory with gauge group SO(5) broken down to

SU(2) × U(1).

To formulate a noncommutative field theory whose gauge group is SU(N), there is

only one available framework. This is the formalism put forward in refs. [14, 15] that led

to the formulation of the noncommutative standard model [16] and some Grand Unified

theories [17]. The phenomenology [18 – 20] that these theories give rise to may be detected

at the LHC.

In the formalism of refs. [14, 15] — that can be used for any representation of any gauge

group — the noncommutative gauge fields are defined from the ordinary fields by means

of the Seiberg-Witten map, this map being given by a formal power series in θµν. The

noncommutative gauge fields thus take values in the enveloping algebra of the Lie algebra

of the gauge group. This is very much at variance with the standard formalism used in

noncommutative gauge theory, which demands the gauge group to be U(N). Hence, unlike

in the ordinary Minkowski space-time case, the noncommutative Yang-Mills-Higgs theories

to be considered in this paper are not theories that are part of the U(N) theories analysed

in refs. [5 – 10]

The layout of this paper is as follows. In section 2 we define our noncommutative

Yang-Mills-Higgs theories and the asymptotic behaviour of the fields. We also discuss the

Bogomol’nyi bound and deduce the noncommutative BPS equations. The computation of

the most general monopole solution — when it exists — to the noncommutative SU(2) BPS

equations at first order in θµν is carried out in section 3. In this section, we also discuss the

– 2 –



J
H
E
P
0
1
(
2
0
0
7
)
1
0
0

existence of noncommutative fundamental BPS monopoles and some two-monopoles for

SU(3) and, finally, the existence of solutions to the noncommutative BPS equations that

correspond to the family of solutions with a massless monopole reported in ref. [13] for

SO(5). Since, in general, the noncommutative BPS equations studied in section 3 have no

solutions that are formal power series in θµν , we compute in section 4 the static solutions

to the noncommutative Yang-Mills-Higgs equations with vanishing Higgs potential which

go to the ordinary BPS monopole solutions for SU(2) and to the fundamental and two-

monopoles considered previously for SU(3). The computations are carried out in the gauge

a0 = 0. How the noncommutative character of space-time affects at first order in θµν the

SO(5) family of solutions with massless monopoles displayed in ref. [13] is also studied

here. In the appendix, we discuss whether or not Derrick’s theorem implies — as does in

the instanton case, see ref. [21] — that there are no solutions at second order in θµν to the

noncommutative Yang-Mills-Higgs equations solved in section 4.

2. The noncommutative Hamiltonian, Bogomol’nyi bounds and the non-

commutative BPS equations

Our noncommutative gauge theories will have the following action

S =

∫

d4x − 1

2
TrFµν ? Fµν + Tr(DµΦ)† ? DµΦ. (2.1)

The symbol ? will stand for the Moyal product: (f ? g)(x) = f(x)e
i
2

h θµν←−∂µ
−→
∂νg(x). The

noncommutative field strength Fµν and the covariant derivative Dµ are given by Fµν =

∂µAν − ∂νAµ − i[Aµ, Aν ]?, Dµ = ∂µ − i[Aµ, ]?, respectively. Aµ and Φ denote the

noncommutative gauge field and the Higgs field, respectively. They are defined in terms

of the ordinary gauge field, aµ, and the ordinary Higgs field, φ, by means of the Seiberg-

Witten map, which we shall take to be a formal power series in hθµν . The ordinary fields

aµ and φ take values in the Lie algebra of the gauge group — in our case, SU(2), SU(3)

and SO(5) — in the fundamental representation. We shall normalize the generators of the

gauge group, the hermitian matrices T a, as follows Tr T aT b = 1
2 δab, and assume that there

is a dimensionful parameter v in the theory defined by v = 2Tr φ2(t, |~x| → ∞).

The Seiberg-Witten map is not unique — a fact very much welcomed when proving

renormalizability of some models [22, 23]. At first order in hθµν the most general expression

for it that yields hermitian noncommutative fields and is a polynomial in the fields, their

derivatives and v — we want the map to be well-defined when v vanishes — reads

Aµ = aµ − h

4
θαβ{aα, ∂βaµ + fβµ} + hDµH + hSµ + O(h2),

Φ = φ − h

4
θαβ{aα, 2Dβφ + i[aβ , φ]} + ih[H,φ] + hF + O(h2),

H = µ1 θαβfαβ + µ2 θαβ[aα, aβ ], (2.2)

Sµ = κ1 θαβDµfαβ + κ2 θµ
β{Dβφ, φ} + iκ3θµ

β [Dβφ, φ] + k4 v θµ
βDβφ + w θµ

ρDνfνρ,

F = λ1θ
αβ {fαβ , φ} + iλ2 θαβ[fαβ , φ] + λ3 v θαβfαβ.
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The symbols µi, κi, λi and w denote dimensionless real constants, v is the parameter with

mass dimension defined above, fµν = ∂µaν − ∂νaµ − i[aµ, aν ] and Dµ = ∂µ − i[aµ, ].

When all the constants µi, κi, λi and w are set to zero, one gets the standard Seiberg-

Witten map, i.e., the straightforward generalization to our case of the map originally

introduced by Seiberg and Witten for U(1) noncommutative gauge theories. Notice that

the monomials κ1 θαβDµfαβ, κ3θµ
β [Dβφ, φ], w θµ

ρDνfνρ, iλ2 θαβ[fαβ, φ], κ4 v θµ
βDβφ and

λ3 v θαβfαβ always belong to the Lie algebra of the simple gauge group and thus can be set

to zero by redefining the field aµ. However, the terms κ2 θµ
β{Dβφ, φ} and λ1θ

αβ {fαβ, φ} do

not belong to the Lie algebra of the simple gauge group and hence they do not correspond

to field redefinitions of aµ. The terms in eq. (2.3) that go with H are gauge transformations.

Notice that in the noncommutative U(N) case of refs. [5 – 11] the terms κ2 θµ
β{Dβφ, φ}

and λ1θ
αβ {fαβ , φ} also correspond to field redefinitions of aµ. We shall see in the next

section that at least for SU(2), SU(3) and SO(5), and at odds with the U(N) case, the

value of the real constants κ2 and λ1 is physically relevant.

In this paper we will not be interested in the most general Seiberg-Witten map. Indeed,

in keeping with the situation for the noncommutative U(N) theories of refs. [5 – 10], we

shall restrict ourselves to theories whose action in the temporal gauge — here, a0 = 0 —

depends on the generalized coordinates — ai(t, ~x) and φ(t, ~x), in our case —, the generalized

velocities — ∂0ai(t, ~x) and ∂0φ(t, ~x), for our theories — and the spatial derivatives of them,

but not on generalized accelerations nor on any other higher time derivatives. Thus, the

noncommutative matrix parameter θµν will be taken to be of magnetic type — i.e., θ0i = 0

— and Φ[φ, aµ] and Ai[aµ, φ] must not involve time derivatives — otherwise D0Φ or F0i

in eq. (2.1) would give rise, at least, to second order time derivatives. a0 = 0 does not

imply A0 = 0, but restricts the form of A0 to linear combinations of terms linear in

(∂0ai, ∂0φ), the coefficients of these combinations being functions of the ordinary fields

and/or their spatial derivatives, but having no time derivatives of the former. For this

Seiberg-Witten map, Fij and DiΦ do not involve time derivatives of ordinary fields, and

F0i and D0Φ are linear combinations of terms proportional to ∂0ai, ∂0φ , with coefficients

free of time derivatives. That a Seiberg-Witten map — in fact, infinitely many — satisfying

the previous requirements exists at any order in hθµν can be readily shown by using the

Seiberg-Witten map defined by the following equations:

dAµ

dh
= −1

4
θij{Ai, ∂jAµ + Fjµ}? + DµĤ + Ŝµ

dΦ

dh
= −1

4
θij{Ai, 2DjΦ + i[Aj ,Φ]?}? + i[Ĥ,Φ]? + F̂

Ĥ = µ1 θijFij + µ2 θij[Ai, Aj ]?, (2.3)

Ŝµ = κ1 θijDµFij + κ2 θµ
j{DjΦ,Φ}? + iκ3θµ

j [DjΦ,Φ]? + κ4 v θµ
jDjΦ,

F̂ = λ1θ
ij {Fij ,Φ} + iλ2 θij[Fij ,Φ]? + λ3 v θijFij ,

where µi, κi and λi are dimensionless real constants, Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]? and

Dµ = ∂µ − i[Aµ, ]?.

The restrictions imposed on the Seiberg-Witten map in the previous paragraph do not

give a unique Seiberg-Witten map, though. At first order in hθµν , they merely set w = 0.
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However, this yields an action that is quadratic in the generalized velocities so that the

Hamiltonian can be derived from it by using the standard textbook formalism. Indeed,

there is a single generalized momenta, pi = ∂L
∂q̇i

, per generalized coordinate, qi, and the

Hamiltonian, H, can be obtained from the Lagrangian, L, by employing the elementary

expression H =
∑

i piq̇i − L. In our case the Hamiltonian reads

H =

∫

d3~x Tr (EiEi + BiBi + D0ΦD0Φ + DiΦDiΦ) , (2.4)

where Ei = Fi0, Bi = 1
2εijkFjk. The Hamiltonian has been computed in the gauge a0 = 0;

the Gauss-law constraint takes here the form

Tr
δA0

δaa
0

(DjEj + i[D0Φ,Φ]?) = 0. (2.5)

Let us note that although the Hamiltonian in eq. (2.4) is defined by the same formal

expression as in the U(N) case of refs. [5 – 10], the Gauss-Law constraint signals a difference

with the U(N) case, where it reads DjEj + i[D0Φ,Φ]? = 0. This difference stems from the

fact that for simple gauge groups, unlike for U(N) gauge groups, noncommutative fields

do not take values in the Lie algebra of the gauge group.

We shall introduce next the asymptotic boundary conditions for the noncommutative

fields Φ(t, ~x) and Aµ(t, ~x). These conditions read

Φ(t, ~x) ∼ φ(t, ~x) + O
(

1
|~x|2

)

as |~x| → ∞,

Aµ(t, ~x) ∼ aµ(t, ~x) + O
(

1
|~x|2

)

as |~x| → ∞.
(2.6)

A simple dimensional analysis shows that the asymptotic boundary conditions above follow

from the Seiberg-Witten map defined at first order by eq. (2.3) — and at higher-order by

eq. (2.4) — and the asymptotic boundary conditions for the ordinary fields that we set

next. For the ordinary fields φ(t, ~x) and ai(t, ~x), we shall take the boundary conditions in

the gauge a0 = 0 that are customary in monopole physics [24]:

φ(t, ~x) = g(t, x̂)φ0g(t, x̂)† + O
(

1
|~x|

)

as |~x| → ∞,

ai(t, ~x) ∼ 1
|~x| as |~x| → ∞,

Diφ ∼ 1
|~x|2 as |~x| → ∞,

(2.7)

where x̂ = ~x/|~x| and φ0 is the value of the Higgs field along a given fixed direction in space.

g(t, x̂) defines a smooth map from the two-sphere at spatial infinity into the coset G/H, G

and H being respectively the broken and unbroken gauge groups.

Let us introduce now the magnetic charge, QM , of the noncommutative fields:

QM =
1

2πv
Tr

∫

dSi BiΦ =
1

2πv
Tr

∫

dSi biφ. (2.8)

bi and φ are the ordinary field configurations that yield Bi and Φ upon acting with the

Seiberg-Witten map. The integrals are carried out over a two-sphere at spatial infinity

– 5 –
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and v = (2Tr φ2(|~x| → ∞))
1
2 = (2Tr φ2

0)
1
2 . QM depends only on the boundary condi-

tions for the fields. The equality between the two surface integrals above follows from the

asymptotic boundary conditions in eq. (2.6) and in turn implies that the noncommutative

fields carry the same magnetic charges as the BPS (multi-)monopoles of the correspond-

ing ordinary theory. Indeed, both the boundary conditions in eq. (2.7) and the form of

the Seiberg-Witten map in eqs. (2.3) and (2.4) lead to the conclusion that at very large

distances the chief contributions to the equations of motion of our noncommutative theory

are given by the corresponding ordinary Yang-Mills-Higgs equations. Of course, QM above

is constrained by the quantization condition of ref. [25].

Let us apply now the Bogomol’nyi trick to the r.h.s. of eq. (2.4):

H =

∫

d4xTr
(

D0ΦD0Φ + EiEi + (Bi ∓ DiΦ)2 ± 4π v QM

)

≥ 4π v |QM |. (2.9)

Hence, for each value of QM — as in the ordinary case — , the absolute minima of the

energy are given by the solutions to the equations

Bi = ±DiΦ, D0Φ = 0, Ei = 0. (2.10)

These equations are the noncommutative BPS equations. Notice that they are the straight-

forward generalization to noncommutative space-time of the ordinary BPS equations. Also

notice that the noncommutative BPS equations above imply the Gauss-law constraint in

eq. (2.5).

That the meaning and form of the noncommutative BPS equations is analogous to

those of the ordinary BPS equations and that the magnetic charge of the noncommutative

field configurations is the same as that of their ordinary counterparts are facts that our

theories share in common with the U(N) noncommutative theories studied in ref. [5, 6, 8].

However, we shall see in the next section that the BPS moduli spaces of our theories are

quite different from the corresponding spaces of the U(N) case.

To close this section let us point out that the solutions to the noncommutative BPS

equations in eq. (2.10) are also solutions to the Yang-Mills-Higgs equations derived from

the action in eq. (2.1). The latter equations read

∫

d4x

{

Tr

[

δAν(x)

δaa
µ(y)

{

DρF
ρν(x) − i[Φ,DνΦ]?(x)

}

]

− Tr

[

δΦ(x)

δaa
µ(y)

{

DρD
ρΦ(x)

}

]}

= 0

∫

d4x

{

Tr

[

δAν(x)

δφa(y)

{

DρF
ρν(x) − i[Φ,DνΦ]?(x)

}

]

− Tr

[

δΦ(x)

δφa(y)

{

DρD
ρΦ(x)

}

]}

= 0.

(2.11)

3. Solutions to the noncommutative BPS equations

In this section we shall look for solutions to the BPS equations given in eqs. (2.10) that

are formal power series in hθµν . We shall work in the temporal gauge a0 = 0 and consider

the following (broken) gauge groups: SU(2), SU(3) and SO(5). These groups will be
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broken down to U(1), U(1)×U(1) and SU(2)×U(1), respectively, by choosing appropriate

asymptotic boundary conditions for the Higgs field.

Let us recall — see previous section— that our Seiberg-Witten map — for a0 = 0 —

is such that A0 is linear in (ȧa
i = ∂0a

a
i , φ̇

a = ∂0φ
a) with coefficients that are constructed

only with ai, φ and ∂k, and that Ai and Φ only depend on ai, φ and their spatial partial

derivatives. Then,

A0 =
∑

l>0

hlL
(l)ia
0 [θµν , ak, φ, ∂k]ȧa

i +
∑

l>0

hlM
(l)a
0 [θµν , ak, φ, ∂k]φ̇a

F0i = ȧi +
∑

l>0

hlP
(l)ja
0i [θµν , ak, φ, ∂k]ȧa

j +
∑

l>0

hlQ
(l)a
0i [θµν , ak, φ, ∂k]φ̇a

D0Φ = φ̇ +
∑

l>0

hlS
(l)ja
0 [θµν , ak, φ, ∂k]ȧa

j +
∑

l>0

hlT
(l)a
0 [θµν , ak, φ, ∂k]φ̇a,

where L
(l)ia
0 , M

(l)a
0 , P

(l)ja
0i , Q

(l)a
0i , S

(l)ja
0 and T

(l)a
0 are homogeneous polynomials in θµν of

degree l. The previous expressions lead to the conclusion that if ai and φ are formal power

series in hθµν , the following result holds

Ei = 0 and D0Φ = 0 ⇐⇒ ȧi = 0 and φ̇ = 0.

Hence, in the remainder of this section, we shall look for solutions to Bi = ±DiΦ that are

time independent and are given by the following formal expansions in powers of hθµν :

ai = a
(0)
i +

∑

l>0

hla
(l)
i , φ = φ0 +

∑

l>0

hlφ(l). (3.1)

a
(l)
i and φ(l) are homogeneous polynomials in θµν of degree l. We shall use besides the

following power series in hθµν :

fij = f
(0)
ij +

∑

l>0

hlf
(l)
ij , Dkφ = (Dkφ)0 +

∑

l>0

hl(Dkφ)(l), (3.2)

where f
(0)
ij = ∂ia

(0)
j − ∂ja

(0)
i − i[a

(0)
i , a

(0)
j ] and (Dkφ)0 = ∂kφ

(0) − i[a
(0)
k , φ(0)], and f

(l)
ij and

(Dkφ)(l) are also homogeneous polynomials in θµν of degree l.

3.1 SU(2) noncommutative BPS magnetic (anti-)monopoles

Let us seek for time-independent ai and φ that belong to the Lie algebra of SU(2) in its

fundamental representation and that solve Bi = ±DiΦ at first order in hθµν . We shall

further assume that the asymptotic boundary conditions are such that QM = ±1 — see

eq. (2.8), i.e., we shall look for noncommutative BPS monopoles and anti-monopoles.

We shall begin our analysis by assuming that the noncommutative fields are defined

by the standard form of the Seiberg-Witten map. This form is obtained by setting Ĥ, Ŝµ

and F̂ in eq. (2.4) to zero. For the standard form of the Seiberg-Witten map in the gauge

a0 = 0 and for time-independent field configurations, it is easy to see that the field Φ

is defined by the standard form of the Seiberg-Witten map that corresponds to the A4

– 7 –



J
H
E
P
0
1
(
2
0
0
7
)
1
0
0

component of the gauge field in a noncommutative space-time with Euclidean signature.

Hence, we can combine ai and φ into an Euclidean ordinary gauge field aµ = (ai, a4 = φ)

and Ai and Φ into a noncommutative gauge field Aµ = (Ai, A4 = Φ), so that, again,

the standard form of the Seiberg-Witten map defines Aµ in terms of aµ. Now, with the

definition Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]? and recalling that neither aµ, nor Aµ, depend

on x4, one concludes that the BPS equations in eq. (2.10) can be turned into the following

(anti-)self-duality equations:

Fµν = ±F̃µν , F̃µν =
1

2
εµνρσF ρσ.

Unfortunately, it has been shown in ref. [21] that even at first order in hθµν there are no so-

lutions to the previous equation. There are thus no noncommutative (anti-)monopoles aris-

ing from the noncommutative SU(2) BPS equations for the standard form of the Seiberg-

Witten map. Hence, all that remains for us to do is to see whether or not this negative

result can be turned into a positive one by taking advantage of the ambiguities in the

form of the Seiberg-Witten map that do not correspond neither to field redefinitions nor

to gauge transformations.

For the general form — with w = 0 — of the Seiberg-Witten map given in eq. (2.3), the

previous construction, that turns the BPS equations into the (anti-)self-duality equations

above, cannot be carried out. Hence, we have to deal with the equation Bi = ±DiΦ

directly. At zero order in hθµν , the previous equation is the ordinary equation:

b
(0)
i = ±(Diφ)(0), (3.3)

where b
(0)
i = 1

2εijkf
(0)
jk and (Diφ)(0) = ∂iφ

(0) − i[a
(0)
i , φ(0)]. a

(0)
i , φ(0), f

(0)
ij have been defined

in eqs. (3.1) and (3.2).

The solutions to eq. (3.3) with magnetic charge ±1 are the ordinary SU(2) (anti-

)monopoles in the fundamental representation:

φ(0) = xa

r H(r) σa

2 , H(r) = ±
(

1
r − λ coth λr

)

a
(0)
i = [1 − K(r)] εial

xl

r2
σa

2 , K(r) = 2 − λr
sinhλr .

(3.4)

where {σa}{a=1,2,3} stands for the Pauli matrices and λ = v — later on we will consider

SU(2) monopoles embedded in SU(3) and the value of λ will change.

The Seiberg-Witten map gives rise to the following expressions for the noncommutative

objects Fij and DkΦ defined as power series in hθµν :

Fij = fij +
∑

l>0

hlF
(l)
ij [ak, φ], DkΦ = Dkφ +

∑

l>0

hlO(l)
k [φ, ai]. (3.5)

Since ai and φ are defined by the expansions in eq. (3.1), we end up with the following

results

F
(l)
ij [ak, φ] =

∑

m≥0 hmF
(l, m)
ij , F

(l, m)
ij = 1

m!
dm

dhm F
(l)
ij [ak, φ]|h=0

O(l)
k [φ, ak] =

∑

m≥0 hmO(l, m)
k , O(l, m)

k = 1
m!

dm

dhmO(l)
k [φ, ak]|h=0.

(3.6)
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We are now ready to write down the contribution to Bi = ±DiΦ that is of order one in hθµν :

(f
(1)
ij + F

(1,0)
ij ) = ±εijk[(Dkφ)(1) + O(1,0)

k ]. (3.7)

The objects that occur in this equation have been defined in eqs. (3.1), (3.2), (3.5) and

(3.6).

Both sides of eq. (3.7) take values in the universal enveloping algebra of SU(2) in the

fundamental representation. Hence, both sides of eq. (3.7) can be expressed as a linear

combination of the 2 × 2 identity matrix and the Pauli matrices. We thus conclude that

eq. (3.7) is equivalent to the set of equations a) and b) that follow:

a) Tr
[

(f
(1)
ij + F

(1,0)
ij )

]

= ±εijkTr
[

(Dkφ)(1) + O(1,0)
k

]

,

b) Tr
[

σa

2 (f
(1)
ij + F

(1,0)
ij )

]

= ±εijkTr
[

σa

2

(

(Dkφ)(1) + O(1,0)
k

)]

.
(3.8)

Some little algebra leads to the result that a) in eq. (3.8) is equivalent to

∑

a

1

2
[(f

(0), a
12 )2 + (f

(0), a
13 )2 + (f

(0), a
23 )2]θij = κ2θjk ∂i(∂kφ

(0), aφ(0), a) − (i ↔ j)

±λ1εijk ∂k [ θmnf (0), a
mn φ(0), a]. (3.9)

Since a
(0)
i = a

(0), a
i

σa

2 and φ(0) = φ(0), a σa

2 are fixed by eq. (3.4), one concludes that eq. (3.9)

— and hence a) in eq. (3.8) — is more a no-go condition than an equation of motion. Indeed,

it holds if, and only if, the parameters κ2 and λ1 of the Seiberg-Witten map in eq. (2.3)

are tuned to the following values

κ2 = −1

2
, λ1 =

1

4
. (3.10)

Next, taking into account the Seiberg-Witten map defined in eq. (2.3), one may show

that the equality b) in eq. (3.8) holds if, and only if,

D
(0)
i (a′j) − D

(0)
j (a′i) = ±εijk

(

D
(0)
k φ′ − i[a′k, φ

(0)]
)

, (3.11)

where

a′i = a
(1)
i + κ1 θkl D

(0)
i f

(0)
kl + iκ3 θi

l [(Dlφ)(0), φ(0)] + κ4 vθi
jD

(0)
j φ(0), (3.12)

φ′ = φ(1) + iλ2 θkl [f
(0)
kl , φ(0)] + λ3 v θijf

(0)
ij .

Now, eq. (3.11) is the equation of the zero modes associated to the ordinary SU(2) BPS

(anti-)monopole. Hence, a′i, φ
′ in eq. (3.13) satisfy the zero mode equations in the back-

ground of the ordinary SU(2) BPS (anti-)monopole. Also notice that eq. (3.11) shows

that the monomials κ2 θ j
i {Djφ, φ} and λ1 θij{fij, φ} do not contribute to b) in eq. (3.8),

so that the latter equations are not affected by the constraint in eq. (3.10). Let us stress

that at first order in hθµν only for the choice of constants given in eq. (3.10) there exist

BPS (anti-)monopole solutions to the noncommutative BPS equations defined with the

help of the Seiberg-Witten map — with w = 0 — in eq. (2.3). These solutions are given
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by the ordinary (anti-)monopoles plus the field redefinitions that the terms of the Seiberg-

Witten map which go with κ1, κ3 and λ2 give rise to. From the previous statement one

deduces that the terms κ2 θ j
i {Djφ, φ} and λ1 θij{fij , φ} in eq. (2.3) that constitute part of

the ambiguity in the Seiberg-Witten map — the other being field redefinitions and gauge

transformations — are not physically irrelevant in the SU(2) case since the existence of a

BPS moduli space with elements that are formal power series in hθµν depends drastically

on the value of κ2 and λ1.

We shall close this subsection showing that the number of zero modes, or moduli,

associated with the noncommutative BPS monopole found is four. Indeed, the noncom-

mutative BPS equations are invariant under translations — three moduli-and the large

gauge transformation eiχ
φ(~x)

v , 0 ≤ χ < 2π — one moduli. One may rule out the possibility

of the existence of further zero modes — that should vanish as θµν → 0 — as follows.

Let δz = (δai, δφ) denote a zero mode that can be expressed as a power series in hθµν :

δz =
∑

l≥0 hlδz(l). Then the components of δz(l), which are homogeneous polynomials in

θµν , must satisfy the following system of equations

L(0)δz(0) = 0, L(0)δz(l) = f (l)[a
(m)
i , φ(p), δz(q)],

where L(0) is the ordinary operator characterizing the ordinary zero modes:

(L(0)δz)i = εijkDjδak ∓ (Diδφ − i[δai, φ])

and f (l) is a homogeneous polynomial of degree l in θµν . The actual value of f (l) is

immaterial to our argument, but for the fact that it does not depend on δz(l). Now, let

us assume that there exists a solution to the previous set of equations; then, there are

as many solutions as there are solutions to L(0)δz = 0. We know that, modulo gauge

transformations that go to the identity at infinity, the number of linearly independent

solutions to the ordinary zero mode equation is four.

3.2 Fundamental noncommutative BPS monopole configurations for SU(3).

Two-monopole configurations

In this subsection the ordinary fields ai and φ in eq. (3.1) will take values in the Lie algebra

of SU(3) in the fundamental representation. Let us further assume that the asymptotic

value of φ — and, hence, the asymptotic value of Φ, see eq. (2.6) — along the negative

z-axis is given by

φ(0, 0, z → −∞) = v~h · ~H, (3.13)

where ~H = (H1,H2), H1 and H2 being the generators of the Cartan subalgebra of SU(3),

and ~h = (h1, h2) is a unitary two-vector that unless otherwise stated will have non-vanishing

scalar product with any root of SU(3).

For these boundary conditions the gauge SU(3) symmetry is broken down to U(1) ×
U(1). It is well known [25] that for this maximal breaking a solution to the ordinary BPS

equations, bi = Diφ, will have a magnetic vector ~g = n1
~β1

β2
1
+n2

~β2

β2
2
, where the integers n1 ≥ 0

and n2 ≥ 0 are topological numbers and ~β1 and ~β2 are the unique set of simple roots of
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SU(3) selected by the condition ~h · ~βi > 0. It is further well established [12] that these BPS

solutions can be understood as multi-monopole configurations made out of two fundamental

monopole solutions or their corresponding anti-monopoles. These fundamental monopole

solutions have topological charges (n1, n2) equal to (1, 0) and (0, 1), respectively, and are

obtained by embedding the SU(2) monopole in the SU(2) subgroups of SU(3) defined by

the roots ~β1 and ~β2 of SU(3), respectively.

Let T a
βi

, a = 1, 2, 3 and i = 1, 2 be the generators of the SU(2) subgroup of SU(3)

defined by the simple root ~βi. Then,

T 1
βi

=
1

√

2β2
i

(E~βi
+ E−~βi

), T 2
βi

=
−i

√

2β2
i

(E~βi
− E−~βi

), T 3
βi

=
1

β2
i

~βi · ~H,

where E~βi
is the generator of SU(3) defined by the root ~βi in the Cartan-Weyl decomposition

of the Lie algebra of SU(3): [Hk, E~βi
] = (~βi)k E~βi

. The fundamental monopoles with

topological charges (1, 0) and (0, 1) are obtained by replacing i with 1 and 2, respectively,

in the following equations

φ
(0)
βi

=
∑

a=1,2,3

φ(0) a T a
βi

+ v~h · ~H − v~h · ~βi T 3
βi

a
(0)
βi

=
∑

a=1,2,3

a
(0) a
i T a

βi
. (3.14)

φ(0) a and a
(0) a
i are the functions given in eq. (3.4) with the choice of positive sign for

H(r) and for λ = v~h · ~βi. Of course, the previous field configurations are solutions to the

noncommutative BPS equations Bi = DiΦ at order zero in hθµν .

Before computing the first-order-in-θµν corrections — a
(1)
i and φ(1) in eq. (3.1) — to

the previous ordinary fundamental monopoles, we need some preparations. We shall choose

the coordinate axis in the root space and the Cartan-Killing metric so that ~β1 = (1, 0) and
~β2 = (−1

2 ,
√

3
2 ). The Gell-Mann generators of SU(3) will be denoted by T a = λa

2 , a = 1 . . . 8,

where λa are the Gell-Mann matrices. Under the adjoint action of the SU(2) generators T a
βi

,

a = 1, 2, 3, the generators of SU(3) T a, a = 1 . . . 8 can be sorted out into one triplet, two

doublets and one singlet, which have the following value in terms of Gell-Mann matrices,

β1 : Triplet : {T 1, T 2, T 3}
Doublets : {T 4, T 5, T 6, T 7},
Singlet : T 8,

β2 : Triplet : {T 6, T 7,−1
2T 3 +

√
3

2 T 8},
Doublets : {T 1, T 2, T 4, T 5},
Singlet : −

√
3

2 T 3 − 1
2T 8.

(3.15)

Denoting by T s
β the singlet generator in the previous equation, it can be seen that the

ordinary field configurations of eq. (3.14) can be written thus

φ(0) =
∑

triplet

φt aT a
β + φsT s

β , φs = 2 v Tr (T s
β
~h · ~H). (3.16)
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φt a, a = 1, 2, 3, are given by the components of the ordinary SU(2) monopole. We are now

ready to compute a
(1)
i and φ(1) in eq. (3.1) in the case at hand. Proceeding as in the SU(2)

case — see eqs. (3.5) and (3.6) — , one obtains that a
(1)
i and φ(1) must satisfy the following

equation:

(f
(1)
ij + F

(1,0)
ij ) = εijk[(Dkφ)(1) + O(1,0)

k ]. (3.17)

Now both sides of the equation take values in the enveloping algebra of SU(3) in the

fundamental representation. Hence, eq. (3.17) is equivalent to the following two equations

a) Tr
[

(f
(1)
ij + F

(1,0)
ij )

]

= εijkTr
[

(Dkφ)(1) + O(1,0)
k

]

,

b) Tr
[

λa

2 (f
(1)
ij + F

(1,0)
ij )

]

= εijkTr
[

λa

2

(

(Dkφ)(1) + O(1,0)
k

)

]

.
(3.18)

As in the SU(2) case, the equality a) in the previous equation only involves the zero order

contributions to the field configurations: a
(0)
i and φ(0) in eqs. (3.14) and (3.16). Eq. a) is

thus a constraint on the parameters of the Seiberg-Witten map. Although φ(0) has a non-

vanishing component along the singlet generator T s
β , one may show that a) in eq. (3.18)

holds if, and only if, the parameters κ2 and λ1 of the Seiberg-Witten map in eq. (2.3) take

the same values as in the SU(2) case — see eq. (3.10). Some computations lead to the

conclusion that the equality b) in eq. (3.18) is equivalent to the following equation

D
(0)
i (a′j) − D

(0)
j (a′i) = εijk

(

D
(0)
k φ′ − i[a′k, φ(0)]

)

, (3.19)

where a′j and φ′ are defined in terms of a
(1)
i and φ(1) by the following identities:

a
(1)
i = a′i − κ1 θkl D

(0)
i f

(0)
kl − iκ3 θi

l [D
(0)
l φ(0), φ(0)] − κ4 v θi

jD
(0)
j φ(0) +

φs

2
√

3
θi

j D
(0)
j φ(0),

φ(1) = φ′ − iλ2 θij [f
(0)
ij , φ(0)] − λ3 v θijf

(0)
ij − φs

4
√

3
θij f

(0)
ij , (3.20)

respectively.

Eq. (3.19) is defining, modulo gauge transformations, the zero modes, or moduli, of the

corresponding ordinary fundamental monopole. Hence, a′i and φ′ are given by appropriate

linear combinations of the corresponding moduli with coefficients that depend linearly on

hθµν . This is completely analogous to what we found in the SU(2) case. However, we see

that now a
(1)
i and φ(1) contain extra contributions, as compared with those in eq. (3.13),

coming from the singlet part, φs T s
β , of φ(0). And yet, the complete noncommutative correc-

tion to the ordinary SU(3) BPS fundamental monopoles is a linear combination of ordinary

zero modes and field redefinitions. Let us stress that the values of the real coefficients k1,

k3, k4, λ2 and λ3 that parametrize the ambiguity in the Seiberg-Witten map corresponding

to field redefinitions have no bearing on the existence of noncommutative BPS solutions.

However, the existence of these noncommutative field configurations demands k2 = −1
2 and

λ1 = 1
4 , k2 and λ1 parametrizing the ambiguities of the Seiberg-Witten map that cannot

be interpreted neither as field redefinitions nor as gauge transformations.

In ordinary space-time, there is another natural embedding of SU(2) into SU(3). This

is the embedding along the remaining positive root ~β3 = ~β1 + ~β2. The embedding of
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the ordinary SU(2) monopole in the SU(2) subgroup of SU(3) defined by ~β3 has topo-

logical charges (1, 1) and is not a fundamental monopole but rather a two-monopole field

configuration constituted by a fundamental monopole of type (1, 0) and another of type

(0, 1) superimposed at the same point. The mass and magnetic charge of this (1, 1) two-

monopole are the sum of those of its constituent fundamental monopoles — see [12] for

further information. Obviously, the noncommutative counterpart of the previous ordinary

two-monopole is given, at first order in hθµν and if eq. (3.10) holds, by eq. (3.20), but,

now, λ is equal to v~h · ~β3 and the generators of SU(3), T a
β3

, are defined in terms the eight

Gell-Mann matrices, λa, as follows

Triplet : {T 4, T 5,
1

2
T 3 +

√
3

2
T 8},

Doublets : {T 1, T 2, T 6, T 7}, (3.21)

Singlet :

√
3

2
T 3 − 1

2
T 8.

The labels Triplet, Doublets and Singlet refer to the behaviour of T a, a = 1 . . . 8, under

the adjoint action of the SU(2) generators T a
β3

, a = 1, 2, 3.

The noncommutative field configuration we have just constructed has topological

charges (1, 1) and mass M3 equal to M1 + M2, with M1 = v~h · ~β1 and M2 = v~h · ~β2.

Further, one may argue that, as is the case with its ordinary counterpart, there are eight

zero modes, or moduli, associated with it. Indeed, the number of linearly independent

normalizable zero modes can be obtained by computing the index of an operator that dif-

fers from the corresponding ordinary operator in ref. [12] by terms that are of order one

in hθµν . These terms are to be considered small continuous perturbations of the ordinary

operator and hence they will not change the value of the index — this is actually what

happens in the case of the chiral anomaly in ref. [26] and for fundamental monopoles. It

is therefore natural to conclude that the noncommutative BPS configuration obtained for

the root ~β3 is made out of two fundamental noncommutative monopoles: a β1-monopole

and a β2-monopole.

Finally, it is straightforward to repeat the previous analysis for negatively charged

monopoles, obtained as deformations of the embeddings of the SU(2) anti-monopole along

the SU(2) subalgebras defined by the roots ~β1, ~β2 and ~β3. The same conclusions are reached

as in the case of positively charged monopoles.

3.3 Noncommutative SO(5) theory and BPS massless monopoles

In ordinary space-time, when the unbroken gauge group is not the maximal torus of the

broken gauge group, there show up massless monopoles [13]. These objects do not occur as

isolated solutions to the equations of motion, but manifest themselves in multi-monopole

field configurations as clouds surrounding massive monopoles and carrying non-abelian

magnetic charges. The simplest example where these field configurations with massless

monopoles occur is furnished by SO(5) Yang-Mills-Higgs theory, with SO(5) broken down

to SU(2) × U(1). An eight-moduli family of BPS solutions was found in ref. [27] that

contains one fundamental massive β-monopole and one massless γ-monopole. The Higgs
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field of this configuration satisfies the boundary condition φ(0, 0, z → −∞) = v~h · ~H, with
~h · ~β > 0 and ~h · ~γ = 0. {~β, ~γ} is a set of simple roots of SO(5). We label the roots of

SO(5) as follows: {±~α,±~β,±~γ,±~µ}, where

~α = (0, 1) ~β =

(

− 1

2
,
1

2

)

~γ = (1, 0) ~µ =

(

1

2
,
1

2

)

.

To display the BPS two-monopole solution in question some notation is needed. Let E±δ

be the rising and lowering generators of SO(5) defined by the root ~δ of the latter. Let T a
δ

denote, for a = 1, 2, 3, the generators of the SU(2) subgroup of SO(5) defined by the root
~δ. Then, any element, Q, of the Lie algebra of SO(5) admits the following decomposition:

Q =

3
∑

a=1

Q(1)aTα
a +

3
∑

a=1

Q(2)aTγ
a + trQ(3)M, M =

i
√

β2

(

Eβ −E−µ

Eµ E−β

)

,

where Q(3)∗ = −σ2Q(3)σ2, with σ2 denoting the second Pauli matrix. Then, the field

configuration constituted by a massive ~β-monopole and a massless ~γ-monopole has the

following components: Q(s)a = ai(s)
a or φ(s)a, s = 1, 2 and a = 1, 2, 3, and Q(3) =

ai(3) or φ(3), with

ai(1)
a = εaim A(r)xm

r , φ(1)a = H(r) xa

r ,

ai(2)
a = εaim G(r, b)xm

r , φ(2)a = G(r, b) xa

r ,

ai(3) = σi F (r, b), φ(3) = −iIF (r, b),

A(r) = 1
r − v

sinh(vr) , H(r) = 1
r − v coth(vr),

F (r, b) = v√
8 cosh(vr/2)

L(r, b)1/2, G(r, b) = A(r)L(r, b),

L(r, b) =
[

1 + r
b coth(vr

2 )
]−1

, b > 0.

(3.22)

σi and I stand for the Pauli matrices and the 2 × 2 identity matrix, respectively, and

v = 2~β · ~h. Notice that under the unbroken SU(2) subgroup furnished by ~γ, Qa(1), Qa(2)

and Q(3) transform as three singlets, a triplet and a complex doublet. The SU(2) triplet

Qa(2) decays as 1/r in the region 1/v . r . b. This is the non-abelian cloud representing

classically the massless monopole which is charged under the unbroken SU(2) — for further

discussion, see refs. [13, 4].

The purpose of this subsection is to see whether, at first order in hθµν , there exist

solutions to the noncommutative BPS equation, Bi−DiΦ = 0, that are formal power series

in hθµν and that go to the field configuration in eq. (3.22) as hθµν → 0. We shall assume

that the generators of SO(5) are in the fundamental representation. The contribution, at

first order in hθµν , to the non-abelian BPS equation reads

E ≡ f
(1)
ij + F

(1,0)
ij − εijk[(Dkφ)(1) + O(1,0)

k ] = 0.

The notation is the same as in subsection 2.1, but now E belongs to the enveloping algebra

of SO(5) in the fundamental representation. In the previous cases, since we were dealing
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with SU(N) groups in the fundamental representation, any element of the enveloping alge-

bra could be expressed as a linear combination of the generators of the Lie algebra and the

identity; this is no longer the case now. The generators of the Lie algebra of SO(5) in the

fundamental representation can be taken as pure imaginary hermitian — and therefore an-

tisymmetric — matrices; then, the enveloping algebra includes also all the real symmetric

matrices. It is possible to construct a basis {Ra} of the enveloping algebra of SO(5) in the

fundamental representation that is made out of the generators of SO(5), {T a}, a = 1 . . . 10

and a basis {Sa}, a = 1 . . . 15 of the real symmetric matrices. The whole basis can be made

orthogonal with respect to the trace operation: Tr RaRb ∝ δab. Using this orthogonal basis,

the previous equation can be projected out onto a given element of the former just by first

multiplying the latter by the element in question and, then, taking traces:

E = 0 ⇔ Tr Sa E = 0, ∀a = 1 . . . 15 and Tr T a E = 0, ∀a = 1 . . . 10.

Since the trace of an antisymmetric matrix times a symmetric one vanishes, it turns out that

f
(1)
ij and (Dkφ)(1) drop out from TrSa E = 0. Hence, only the ordinary field configuration

enters the equations Tr Sa E = 0, which are thus turned into the following constraint on

the parameters of the Seiberg-Witten map:

Tr Sa[F
(1,0) st
ij − εijkO(1,0) st

k ] = −TrSa[D
(0)
i (κ2 θj

k{(Dkφ)(0), φ(0)}) − (i ↔ j)]

+εijmTr Sa D(0)
m [λ1 θkl{f (0)

kl , φ(0)}]. (3.23)

The reader is referred to subsection 3.2 for notation. The superscript ”st” shows that the

corresponding object is computed by using the standard form — all free parameters set to

zero — of the Seiberg-Witten map. Now, substituting eq. (3.22) in eq. (3.23), one ends up

with the conclusion that the resulting equation holds if, and only if, κ2 and λ1 take the

values quoted in eq. (3.10).

It remains to solve Tr T a E = 0. Since {T a, T b} is a symmetric matrix, the previous

equation boils down to

D
(0)
i (a′j) − D

(0)
j (a′i) = ±εijk

(

D
(0)
k φ′ − i[a′k, φ(0)]

)

a′i = a
(1)
i + κ1 θkl D

(0)
i f

(0)
kl + iκ3 θi

l [(Dlφ)(0), φ(0)] + κ4 vθi
jD

(0)
j φ(0),

φ′ = φ(1) + iλ2 θkl [f
(0)
kl , φ(0)] + λ3 v θijf

(0)
ij , (3.24)

where (a
(0)
i , φ(0)) denotes the ordinary field configuration of eq. (3.22). Hence, the first-

order-in-hθµν BPS corrections to the ordinary field configuration are given, again, by the

terms of the Seiberg-Witten map associated to field redefinitions plus θ-dependent linear

combinations of the ordinary zero modes.

One may care to compute the first-order-in-hθµν BPS corrections to ordinary fun-

damental monopoles for SO(5) in the fundamental representation. Proceeding as in the

previous paragraphs one concludes that they exist if, and only if, eq. (3.10) holds, and that

they are given by eq. (3.24), if (a
(0)
i , φ(0)) denotes now the ordinary fundamental monopoles.

Let us stress that we have shown that, for SU(2) and SO(5) in their fundamental repere-

sentation, a(1), φ(1) are given by the same type of corrections. A result that has its origin
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partially in the fact that for both groups TrT a{T b, T c} = 0. Notice that Tr T a{T b, T c} 6= 0

for SU(3).

4. Static solutions to the BPS Yang-Mills-Higgs equations at first order

in hθ
µν

In the previous section, we have seen that for some gauge simple groups only if the pa-

rameters labeling the ambiguity of the Seiberg-Witten map are appropriately chosen there

exist noncommutative BPS (multi-)monopoles that are power series in hθµν and that go

to a given ordinary BPS (multi-)monopole configuration as hθµν → 0. The next question

to ask is whether given an ordinary BPS (multi-)monopole configuration there exists for

any value of κ2 and λ1 a solution to the noncommutative Yang-Mills-Higgs equations in

the BPS limit that has the following properties: it is static, it is a power series in hθµν

and it goes to the given ordinary BPS (multi-)monopole configuration as hθµν → 0. Notice

that the noncommutative BPS equations had contributions that were proportional to the

identity matrix, and this was part of the problem, whereas in the noncommutative Yang-

Mills-Higgs equations in the BPS limit for simple groups, which are displayed in eq. (2.11),

no contribution of that sort occurs.

4.1 SU(2) case

At zero order in hθµν , the equations of motion are the ordinary ones and hence they

are satisfied by a
(0)
i , φ(0) — we use the notation of eq. (3.1) — given by ordinary BPS

(multi-)monopole configurations. Let us choose the gauge a0 = 0. After carrying out some

simplifications, it can be shown that the contributions to eqs. (2.11), at first order in hθµν

and for time independent field configurations, read

DiDiφ
′ − iDi[a

′
i, φ] − i[a′i,Diφ] = 0,

Di(Dia
′
j − Dja

′
i) − i[a′i, fij ] + i[φ′,Djφ] + i[φ,Djφ

′ − i[a′j , φ]] = 0, (4.1)

a′j = a
(1)
j + κ1 θkl Djfkl + iκ3 θj

l [(Dlφ), φ] + vκ4 θj
lDlφ

φ′ = φ(1) + iλ2 θkl [fkl, φ] + v λ3 θijfij

where Di = D
(0)
i = ∂i − i[a

(0)
i , ], fij = f

(0)
ij , ai = a

(0)
i and φ = φ(0), a

(0)
i and φ(0) being

the fields defining the ordinary BPS SU(2) (anti-)monopole. It is natural to look for a′i
and φ′ such that

a′i(~x) ∼ 1

|~x|2 and φ′(~x) ∼ 1

|~x|2 as |~x| → ∞. (4.2)

Note that one readily deduces from eq. (2.7) that the terms that go with κ1, κ2 and

κ3 and λ2 and λ3 in eq. (4.1) satisfy the previous boundary conditions and that these

boundary conditions guarantee that there will be no θµν dependent contributions to the

magnetic charge defined in eq. (2.8). The latter contributions would put into jeopardy the

interpretation of the magnetic charge as a topological quantity.
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Let us analyse the equations for φ′ and a′i. Using the fact that a(0) and φ(0) satisfy the

ordinary BPS equations, the first equation in eq. (4.1) leads to

Di(Diφ
′ − i[a′i, φ] ∓ εijkDja

′
k) = 0. (4.3)

Introducing the four-vector fields in three dimensions ā′µ = (a′i, φ
′) and āµ = (a

(0)
i , φ(0)),

one may cast eq. (4.3) into the form

D̄µ(D̄µā′4 − D̄4ā′µ ∓ εµ4ρσD̄ρā′σ) = 0.

This equation is of the type D̄µX̄µ4 = 0 with D̄ in the background of a self-dual field

āµ and with X̄µ4 being self-dual. Using the techniques in ref. [21], one may show that

the only normalizable solutions to this equation are those satisfying Xi4 = 0. Notice that

D̄µā′4 − D̄4ā′µ ∓ εµ4ρσD̄ρā′σ must be a smooth function of ~x such that it decays as 1/|~x|2
as |~x| → ∞ and, hence, normalizable in three dimensions. Now, X̄µ4 = 0 yields

Diφ
′ − i[a′i, φ] ∓ εijkDja

′
k = 0. (4.4)

This is precisely the equation of the zero modes in the background of an ordinary BPS

SU(2) (anti-)monopole. Going back to the second equation in eq. (4.1), using the result in

eq. (4.4) and the condition fij = ±εijkDkφ, we arrive at

Di(Dia
′
j − Dja

′
i ∓ i[φ, εijla

′
l] ∓ εijlDlφ

′) = 0,

which is automatically satisfied if eq. (4.4) holds. We therefore conclude that φ′, a′i
which satisfy the boundary conditions in eq. (4.2) — see comments below eq. (4.2) —

are just linear combinations of the zero modes of the ordinary BPS (anti-)monopole with

θµν−dependent coefficients. We thus conclude that there are solutions, for SU(2) and at

first order in hθµν , to the noncommutative Yang-Mills-Higgs equations in the BPS limit,

whatever the value of the parameters labeling the ambiguity of the Seiberg-Witten map.

These solutions are given by the field redefinitions of the ordinary BPS (anti-)monopole

furnished by the Seiberg-Witten map plus some appropriate linear combinations of the

ordinary SU(2) zero modes.

4.2 SU(3) case

Let (a
(0)
i , φ(0)) denote the ordinary BPS monopole and two-monopole solutions in

eq. (3.14). Let Di = ∂i − i[a
(0)
i , ], fij = ∂ia

(0)
j − ∂ja

(0)
i − i[a

(0)
i , a

(0)
j ], φ = φ(0), and

let a′j and φ′ be given by

a′k = a
(1)
k + κ1 θij Dkfij +

κ2φ
s

√
3

θk
jDjφ +

κ2√
3
θk

j (Djφ)aφtaT s
β + iκ3 θk

l [(Dlφ), φ]

+κ4 v θk
jDjφ (4.5)

φ′ = φ(1) +
λ1φ

s

√
3

θij fij +
λ1√

3
θijfa

ij φtaT s
β + iλ2 θij [fij , φ] + λ3 v θij fij.
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See subsection 3.2 for notation. Then, for SU(3), the first order in hθµν contribution to

the noncommutative Yang-Mills-Higgs equations of eq. (2.11) in the gauge a0 = 0 and for

time independent field configurations reads

Tr T a
[

2DjDjφ
′ − 2iDj [a

′
j , φ] − 2i[a′j ,Djφ]

]

=

−Tr T aθij

[

− 1

2
Dm{Dmφ, fij} − Dj{Dmφ, fmi} − Dm{Djφ, fmi}

]

,

Tr T a
[

− 2Di(Di a′k − Dk a′i) + 2i[a′i, fik] − 2i[φ′,Dkφ] − 2i[φ,−i[a′k , φ] + Dk φ′]
]

=

−Tr T a

[

θi
k

(

− 1

4
Di{fmn, fmn} − Dm{fni, fmn}

−1

2
Di{Dmφ,Dmφ} + Dm{Diφ,Dmφ}

)

+θij

(

1

2
Dm{fmk, fij} + Di{fmj , fkm}

−Dm{fmi, fkj} − Di{Djφ,Dkφ}
)]

. (4.6)

The non-zero traces that occur on the r.h.s of both equalities in eq.(4.6) are of the type

Tr T a{T b
β, T c

β}. Since {T b
β , T c

β} behaves as a singlet under the SU(2) Lie algebra generated by

{T c
β}c=1,2,3, the r.h.s. is only nonzero if T a is the SU(2) singlet generator. The corresponding

l.h.s of the equations will pick up only the components of a′i, φ′ along the singlet, since

for the basis in eqs. (3.15) and eq. (3.22), TrT aT b = 1
2δab holds and the SU(2) subalgebra

defined by the root ~β acts irreducibly on the specified representations. Hence, the equations

for the components of φ′ and a′k along the singlet decouple from the rest. We can express

φ′ and a′i as follows: φ′ = φ′s + φ′′, with φ′s being the component along the SU(2) singlet,

and analogously a′i = a′si + a′′i .
Let us first analyse the equations for φ′′ and a′′i . In this case the r.h.s. of the equalities

in eq. (4.6) vanishes, so that we are left with the same equations given by the first two

lines of eq. (4.1), whose solutions for the boundary conditions of eq. (4.2) are given by the

zero modes in the background of the ordinary SU(3) BPS (two-)monopole.

It remains to solve the equations for the components, φ′s, a′si , along the singlet. For

each SU(2) embedding in section 3.2, we choose the corresponding basis in eq. (3.15) and

eq. (3.22) and take T a in eq. (4.6) to be the corresponding singlet generator. Now, for each

basis the property TrT s
β{T a

β , T b
β} = 1

2
√

3
δab holds, so that we end up with the following

equations:

∂i∂iφ
′s =

1

2
√

3
θij

[1

2
∂k[(Dkφ)a(fij)

a] + ∂j[(Dkφ)a(fki)
a] + ∂k[(Djφ)a(fki)

a]
]

,

∂i∂ia
′s
j − ∂j∂ia

′s
i =

1

2
√

3
θi

j

[

− 1

4
∂i[f

a
mnfa

mn] − ∂m[fa
nif

a
mn] − 1

2
∂i[(Dmφ)a(Dmφ)a]

+∂m[(Diφ)a(Dmφ)a]
]

+
1

2
√

3
θik

[1

2
∂m[fa

mjf
a
ik]

]

+ ∂i[f
a
mkf

a
jm]

−∂m[fa
mif

a
jk] − ∂i[(Dkφ)a(Djφ)a]

]

.
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The computation of the r.h.s. of both equations for the field configurations in eqs. (3.14)

yields

∂i∂iφ
′s = θijεijk xkf(r),

∂i∂ia
′s
j − ∂j∂ia

′s
i = 2θi

jx
if(r),

f(r) =
1

2
√

3

[

1

2r

d

dr
H ′2 +

1

r

d

dr

(

K ′

r

)2]

.

The general solution to each of these equations is the sum of a particular solution plus a

solution to the homogeneous equation. The homogeneous equation for φ′s has no smooth

solution that vanishes at infinity, while the homogeneous equation for a′si has as non-singular

solutions total derivatives which are equivalent to gauge transformations. Therefore we

just need to find non-singular particular solutions that respect the boundary conditions.

Choosing the following ansätze,

φ′s = θij εijkx
kg(r), a′sj = θi

jx
ih(r), (4.7)

one finds the following solution

g(r) =
1

2
h(r) =

1

4
√

3

H(1 − K)(3 − K)

r3
(4.8)

= − 1

16
√

3r4
csch3(rλ)[rλcosh(rλ)(1 + 4(rλ)2)

−rλcosh(3rλ) + 2sinh(rλ)(−1 − 2(rλ)2 + cosh(2rλ))],

where λ = v~h · ~β. Putting it all together and realizing that the singlet contributions to

a′i and φ′ in eq. (4.1) are proportional to the previously given g(r), one ends up with the

following family of static solutions to the first order in hθµν equations of motion:

φ(1) = δφ(0) + (1 − 4λ1)θ
ijεijkx

kg(r)T s
β − λ1 φs

√
3

θij fij − iλ2 θij [fij, φ] − λ3 v θij fij

a
(1)
i = δa

(0)
i +(4κ2+2)θj

ix
jg(r)T s

β − κ1 θkl Difkl −
κ2φ

s

√
3

θi
jDjφ

−iκ3θi
j[Djφ, φ] − κ4 v θi

j Djφ. (4.9)

δφ(0) and δa
(0)
i denote any linear combination of the zero modes of the corresponding or-

dinary BPS configuration with coefficients that depend linearly on hθµν . Di, fij and φ

have been defined at the beginning of this subsection. The solutions reported in eq. (4.9)

are well behaved at r = 0 and the behaviour at infinity is such that the noncommuta-

tive corrections respect the ordinary boundary conditions and do not contribute to the

magnetic charge. When κ2 = −1
2 , λ1 = 1

4 , values for which there exist solutions to the

noncommutative BPS equations, the singlet contributions vanish and we recover the field

configurations that solve the noncommutative BPS equations for SU(3) — see eq. (3.20).

The solution in eq. (4.9), which exists for any value of the parameters of the Seiberg-

Witten map defined in eq. (2.3) — with w = 0, of course — , constitutes a noncommutative
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deformation of the ordinary BPS field configuration obtained by embedding the ordinary

BPS SU(2) monopole along the root ~β, with ~β = ~βi, i = 1, 2, 3. The mass, Mβ , of the

complete static field configuration, which in general is a noncommutative non-BPS field

configuration, is obtained by substituting ai = a(0) +ha
(1)
i and φ = φ(0) +hφ(1) in eq. (2.9).

After a little algebra one ends up with a number of integrals that have to be worked out

numerically. The final answer for Mβ is then given by

Mβ = Mordinary + 0.10274 h2θijθij λ5

[(

κ2 +
1

2

)2

+ 2

(

λ1 −
1

4

)2]

+ O(h3θ3). (4.10)

Mordinary = 4πλ is the ordinary mass and λ = v ~β · ~h, with ~h defined in eq. (3.13) and

such that ~βi · ~h > 0, ∀i. Recall that h2 does not denote ~h · ~h. Notice that the quadratic

contributions in hθµν to Mβ are not affected by the quadratic contributions in hθµν to field

configurations since (a
(0)
i , φ(0)) satisfies the ordinary BPS equations.

Let ~β1 = (1, 0) and ~β2 = (−1
2 ,

√
3

2 ); then, ~h is given by ~h = (ω,
√

1 − ω2), 0 < ω <
√

3
2 ,

for ~βi · ~h > 0, i = 1, 2.

Now, if ~β = ~β1, then, eq. (4.9) corresponds generically to a noncommutative non-

BPS monopole with topological vector charge (1, 0). If ~β = ~β2, then eq. (4.9) corresponds

generically to a noncommutative non-BPS monopole with topological vector charge (0, 1).

Finally, if ~β = ~β3 = ~β1 + ~β2 we have generically a noncommutative non-BPS two-monopole

configuration with topological charges (1, 1). We do not think that — unless κ2 = −1
2 , λ1 =

1
4 holds — the two-monopole configuration is stable. Indeed a little algebra reveals that

Mβ3 > Mβ1 + Mβ2, if κ2 = −1
2 , λ1 = 1

4 is not satisfied and 0 < ω <
√

3
2 . Indeed,

Mβ3−(Mβ1 +Mβ2)=0.10274h2θijθijv5

[(

κ2+
1

2

)2

+2

(

λ1−
1

4

)2][

15

16
ω(3−4ω2)

]

> 0.

This inequality suggests that the noncommutative character of space gives rise to a repul-

sive interaction between the ~β1-monopole and the ~β2-monopole that constitute the field

configuration for ~β3. Hence, an infinitesimal disturbance of the static configuration with

mass Mβ3 will make the object decay into a system constituted by two infinitely separated

noncommutative non-BPS monopoles, one of type ~β1 and the other of type ~β2. Notice

that the latter two-monopole system has mass equal to Mβ1 + Mβ2 and belongs to the

topological class of the non-commutative non-BPS ~β3-field configuration. This result casts

doubts on the stability of other non-BPS multi-monopole configurations for simple gauge

groups. The extension to the case of negatively charged monopoles is once again trivial;

anti-monopole configurations pick up a minus sign in the term proportional to (1− 4λ1) in

eq. (4.9) and their energy is equal to that of their positively charged partners.

4.3 SO(5) case

As in the SU(2) case — but not for SU(3) — , the traces of the type Tr T a{T b, T c} vanish.

We are thus left precisely with the equations that one finds in eq. (4.1). Repeating the

analysis made below eq. (4.1), we arrive at the same result, i.e., that the first order in

hθµν deformations of the ordinary field configurations are given by the field redefinitions
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determined by the Seiberg-Witten map plus solutions to the zero mode equations in the

background of the ordinary monopole.

5. Summary, conclusions and outlook

For three specific gauge groups — SU(2), SU(3) and SO(5) — in their fundamental rep-

resentations, we have discussed the existence of monopole and some two-monopole field

configurations in noncommutative Yang-Mills-Higgs theories in the BPS limit. We have

looked for field configurations that are formal power series in hθµν and worked at first or-

der in hθµν . We have considered a commutative time and the most general Seiberg-Witten

map that leads to an action that, in the gauge a0 = 0, contains only first order time

derivatives of the fields and is a quadratic functional of them. We have shown that there

is no monopole solution to these BPS equations unless two a priori free parameters of the

Seiberg-Witten map are tuned to two concrete values — see eq. (2.3) and (3.10). These free

parameters are those free parameters that are not related with field redefinitions nor with

gauge transformations. The same state of affairs was met when studying the two-monopole

solution that in the limit hθµν → 0 goes to the ordinary β3-two-monopole solution of SU(3)

and the noncommutative field configuration that in that very limit yields the ordinary one-

massive-one-massless two-monopole solution of SO(5). We then showed that whatever the

values of the parameters of our Seiberg-Witten map the noncommutative Yang-Mills-Higgs

equations admit, at first order in hθµν , monopole field configurations that solve them and

have the same magnetic charge — although for SU(3) they have different mass — as the

ordinary monopoles they go to in the limit hθµν → 0. For SU(2) and SO(5) the first order

in hθµν corrections correspond to field redefinitions of the corresponding ordinary object.

This is not so for SU(3). In this case the masses of the field configurations have contribu-

tions that depend quadratically on θµν, so that the mass of the static ~β3 = ~β1 + ~β2 field

configuration is larger than the sum of the masses of its constituents: the ~β1-monopole and

the ~β2-monopole, ~β1 and ~β2 being given simple roots of SU(3). This static ~β3 non-BPS

field configuration seems to be unstable. Let us now state the main conclusions of this

paper. First, at first order in hθµν , there are BPS monopole solutions in noncommutative

SU(2), SU(3) and SO(5) Yang-Mills-Higgs theory provided the Seiberg-Witten map is ap-

propriately chosen. This is in sharp contrast with the instanton case, where no solutions

to the noncommutative self-duality equations could be found already at first order in hθµν

— see ref. [21]. Second, the parameters κ2 and λ1 of the Seiberg-Witten map in eq. (2.3)

have physics in them. Indeed, the properties of the moduli space of the Yang-Mills-Higgs

equations depend on their values: if they take the values of eq. (3.10), the elements of the

moduli space are BPS objects, and if they do not, they are non-BPS elements. Notice

that the masses of generics non-BPS SU(3) monopoles depend on κ2 and λ1, see eq. (4.10).

For simple gauge groups, the fact that the value of the parameters labeling the ambiguity

in the Seiberg-Witten map which is not related to field redefinitions nor to gauge trans-

formations may have physical consequences is an issue which cannot be overlooked when

considering the phenomenological applications of the noncommutative theories constructed

within the formalism of refs. [14, 15]. Third, for generic values of κ2 and λ1 noncommu-
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tative multi-monopole solutions may become unstable even if they deform ordinary BPS

multi-monopole configurations. There are many directions in which the piece of research

presented in this paper can be further developed. We shall mention just a few of them.

First, the computation of the corrections at second order in hθµν to the (multi-)monopole

field configurations worked out here. We show in the appendix that, at variance with the

case of instantons — see ref. [21], Derrick’s theorem poses no obstruction on the existence

— for a0 = 0 — of static field configurations that solve the equations of motion at second

order in hθµν . Second, it will be interesting to consider other representations and other

gauge groups. Notice that the field equations take values in the enveloping algebra of the

gauge group, so choosing a representation may have physical consequences. Third, it is

very much needed to analyse the question of the stability of non-BPS multi-monopole con-

figurations, such as the configuration of eq. (4.9), by using the methods of ref. [29]. Finally,

it is a pressing need to construct supersymmetric generalizations of the noncommutative

models presented here. In ordinary space-time, BPS monopoles unavoidably occur in some

of these theories, so one wonders whether extended supersymmetry has any bearing on the

value of the parameters of the Seiberg-Witten map and, in particular, if the values for κ2

and λ1 in eq. (3.10) are dictated by supersymmetry.
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A. Solutions at higher order in θ and Derrick’s theorem

In ref. [21], after obtaining the most general solution to the noncommutative equations of

motion for the first-order-in-θµν deformations of the BPST instanton in noncommutative

SU(3) Yang-Mills theory, it was shown by studying the behaviour of the action under

dilatations up to order h2θ2 — i.e., by using Derrick’s theorem [28] — that there were

no solutions that rendered the action stationary at this order. This conclusion could be

reached because the order h2θ2 constraints on the action evaluated at the solution to the

equations of motion depended only on the contributions to the field configuration that were

of order h0θ0 and h1θ1. In the case studied here, this does not happen chiefly due to the fact

that we are extremizing the Hamiltonian, which is dimensionful, rather than dimensionless

as the action is, and the Higgs and gauge field have different scaling behaviours.

As suits our purposes, we shall choose the gauge a0 = 0. Proceeding as in ref. [21],we

shall study the behaviour of the Hamiltonian under infinitesimal dilatations of any of the

(multi-)monopole solutions, (ai(~x), φ(~x)), to the noncommutative Yang-Mills-Higgs equa-

tions found in this paper, those infinitesimal dilatations preserving the boundary conditions
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satisfied at infinity by the (multi-)monopole solution:

a′i = λai(λ~x), φ′ = φ(λ~x), λ = 1 + δλ. (A.1)

The Hamiltonian for an arbitrary Seiberg-Witten map that yields an action of first order

in time derivatives is given by eq. (2.4). We want to obtain the scaling properties of the

different contributions to H, taking into account eq. (A.1) and dimensional considerations.

Because aµ and φ scale in a different way, contributions to the Hamiltonian expanded in

terms of ordinary fields at a given order in hθµν will scale differently depending on the

number of φ fields they have. In the case of the Standard Seiberg-Witten map — for its

definition, see paragraph just below eq. (2.3), it is easy to see that Aµ[aρ] is independent

of φ, while Φ is linear in φ. This allows us to separate H in terms independent of φ and

terms that are quadratic in φ, whose scaling behaviour is readily obtained just by using

dimensional analysis. Thus, we write Hst — ”st” stands for standard Seiberg-Witten map

— as an expansion in powers of hθµν as follows

Hst = Hst
A + Hst

Φ ,

Hst
A = Tr

∫

d3 ~xBiBi,

Hst
Φ = Tr

∫

d3 ~xDiΦDiΦ (A.2)

Hst
A =

∑

l≥0

hlHst(l)
A ,

Hst
Φ =

∑

l≥0

hl Hst(l)
Φ .

Hst
A is independent of φ, and Hst

Φ is quadratic in φ. The scaling properties of these terms

are then given by

δHst(l)
A = (1 + 2l)δλHst(l)

A , δHst(l)
Φ = (−1 + 2l)δλHst(l)

Φ . (A.3)

When evaluating these terms in field configurations that can be written as in eq. (3.1), the

following additional expansions are obtained:

Hst(l)
A/Φ =

∑

m≥0

hmHst(l,m)
A/Φ ,

Hst(l,m)
A/Φ =

1

m!

dm

dhm
Hst(l)

A/Φ[a(0)
µ + hka(k)

µ , φ(0) + hkφ(k)]|h=0.

Therefore the invariance of Hst under the infinitesimal transformations in eq. (A.1) is

equivalent to:

∑

n

hn[(1+2n)Hst(n)
A +(−1+2n)Hst(n)

Φ ] =0=
∑

k≥0

hk
k

∑

l=0

[(1+2l)Hst(l,k−l)
A +(−1+2l)Hst(l,k−l)

Φ ],

i.e.,
k

∑

l=0

[(1 + 2l)Hst(l,k−l)
A + (−1 + 2l)Hst(l,k−l)

Φ ] = 0 ∀k ≥ 0. (A.4)
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For k = 0 this is equivalent to Hst(0,0)
A − Hst(0,0)

Φ = 0, which is satisfied by the ordinary

BPS monopoles. For k = 1 eq. (A.4) gives

Hst(0,1)
A −Hst(0,1)

Φ + 3Hst(1,0)
A + Hst(1,0)

Φ = 0. (A.5)

This relation holds trivially in the SU(2) and SO(5) cases because, recalling that we are

dealing with the standard Seiberg-Witten applications, the first-order-in-hθµν contributions

to the field configurations are just appropriate linear combinations of the zero modes of

the ordinary fields. It is also satisfied in the SU(3) case when evaluating in the field

configuration φ = φ
(0)
β + hφsT s

β , ai = a
(0)
iβ + has

iT
s
β , with φ

(0)
β , a

(0)
iβ given by eqs. (3.14)

and (3.4) and φs, as
i given in eqs. (4.7) and (4.9); each term in eq. (A.5) turns out to

vanish, because all the traces are of the type TrT s
βT a

β = 0.

By substituting k = 2 in eq. (A.4), one obtains the following:

Hst(0,2)
A −Hst(0,2)

Φ + 3Hst(1,1)
A + Hst(1,1)

Φ + 5Hst(2,0)
A + 3Hst(2,0)

Φ = 0.

In contrast with the case analysed in ref. [21], the equation involves the order h2θ2 contri-

butions to the field configurations, due to the fact that in eq. (A.3) the H(n) terms scale

with powers of λ that are non-zero for n = 0. Hence, we do not find any obstruction —

implied by Derrick’s theorem — to the existence, at second-order in hθµν and for a0 = 0,

of static solutions to the noncommutative Yang-Mills-Higgs equations.

In the case of arbitrary SW maps, the scaling behaviour of the different contributions

to the Hamiltonian is more complicated, due to the fact that — see eq. (2.3) — Ai will

receive contributions with arbitrary even numbers of φ’s. Therefore, though we can always

separate the terms of H as in eq. (A.3), with HΦ still scaling as in eq. (A.3), now HA

will not be independent of φ and the scaling behaviour will change. Nevertheless, the

important issue is that there will exist terms H(n) that will scale with powers of λ that are

non-zero for n = 0, so that when imposing the stationarity condition at order h2θ2, we will

have again contributions of the type H(0,2) and the same conclusion as with the standard

Seiberg-Witten map will be reached.
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